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Abstract. A new spectral parameter independeRtmatrix (that depends on all of the
dynamical variables) is proposed for the elliptic Calogero—Moser models. The necessary and
sufficient conditions for the existence thitsmatrix reduces to a determinantal equality involving
elliptic functions. The required identity appears new and is still unproven in full generality; we
present it as conjecture.

1. Introduction

This paper concerns the construction ofRamatrix for the elliptic Calogero—Moser models.
Together with a Lax pair, th&R-matrix is a key ingredient of the modern approach to
completely integrable systems. In this approach the Lax equdtica [L, M] enables

us to construct conserved quantities such as the tracg§, While the R-matrix shows

that these quantities Poisson commute. A system is said to be completely integrable when
we have enough independent, mutually Poisson commuting conserved quantities. For such
systemsR-matrices must exist [3]. For completely integrable systems Liouville's theorem
[1,12] tells us that we may integrate the equations of motion by quadratures; with certain
completeness assumptigran the flows, Arnold’s extension of Liouville’s theorem ensures

the existence of global action-angle variables. Theatrix is also an essential ingredient
when examining the separation of variables of such integrable systems [11, 19].

Recent work has yielded necessary and sufficient conditions fat-aratrix to exist,
together with an explicit construction, and we shall now apply this to the elliptic Calogero—
Moser models. For the rational and trigopnometric degenerations of these models Avan and
Talon [2] have constructe®-matrices under an assumption of momentum independence;
R-matrices can in principle be functions of the dynamical variables. For the elliptic models,
however, [5] shows that no momentum independBnmatrices can be constructed for
more than three particles. This restriction can be circumvented by considennagtrices
depending on a spectral parameter, and such momentum indepeRdeatrices were
found for the elliptic Calogero—Moser models by Sklyanin [18] and Braden and Suzuki
[5]. A question, however, remains unanswered: are there spectral parameter independent
R-matrices for the elliptic Calogero—Moser models? Here we propose Butiatrices.

The necessary and sufficient conditions for fwnatrix to exist reduce to a single identity
involving matrices with elliptic function entries. This identity appears to be new and we
have been unable to prove it in generality: it is given here as conjecture.

1 E-mail address: hwb@ed.ac.uk
1 Flaschka [10] gives several simple examples where these assumptions fail.
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An outline of the paper is as follows. In sections 2 and 3 we briefly review the
construction ofR-matrices and the Calogero—Moser models, respectively. In section 4 we
combine this material to obtain necessary and sufficient conditions for a spectral parameter
independentR-matrix for the elliptic Calogero—Moser models to exist, specifying the
R-matrix when such holds true. The necessary and sufficient conditions may be expressed
as an equality between two determinants involving elliptic functions: this is presented in
section 5. The final section is devoted to a brief discussion.

2. The construction
Recent advances in the construction and understandigroétrices follow from the study
of a more general matrix equation [6]

ATX —XTA=B. (1)

As we shall review, theR-matrix equation is a particular example of this. Becaudsis in
general singular the general solution to (1) is in terms of a generalized inGessdisfying

AGA= A and  GAG=G. 2

Such a generalized inversalways exists. Given & satisfying (2) we have at hand
projection operator®; = GA and P, = AG which satisfy

AP = P,A=A PG =GP, =G. (3)
The matrix equation (1) then has solutions if and only if

(C1 B"=—-B
(C2) (1-P)BA-P)=0

in which case the general solution is
X =1GTBP +GB(A— P+ (1— P)Y + (P]ZP)A @)

whereY is arbitrary andZ is only constrained by the requirement tgtZ P, is symmetric.
Although the general solution appears to depend on the generalized inveesgy other
choice of generalized inverse will only change the solution within the ambiguities given
by (4).

The classicalR-matrix construction [17] arises as a particular case of (4) as follows.
Suppose the Lax matriX is in a representatio of a Lie algebrag (here taken to be
semi-simple). The classic#l-matrix is anE ® E valued matrix such that

[R,L®1]—[R",1® L] ={L®L). (5)

Let 7, denote a basis for the (finite-dimensional) Lie algepravith [7,, 7,] = c}wTA
defining the structure constants @f Set¢ (7,,) = X,,, where¢ yields the representatioh
of the Lie algebra; we may take this to be a faithful representation. Witk= > L*X,,
the left-hand side of (5) becomes

(LPL)y=) (L' L)X, ® X,

wow

1 Accounts of generalized inverses may be found in [4,9, 15, 16]. Indeed the Moore—Penrose inverse—which is
unique and always exists—further satisfiegG)’ = AG, (GA)! = GA.



A conjectured R-matrix 1735

whereas settin® = R*’ X, ® X, andR" = R"*X, ® X, the right-hand side yields
[R,L®L—[R",1® L] = R*(X,, L] ® X, — X, ® [X,., L])
=R"L"([X,, X;]1® X, — X, ® [X,. Xi])
= (R L — R, LMX, ® X,.

By identifying A"’ = ¢!}, L* = —ad(L)",, B"" = {L", L"} and X" = R"’ we see that (5)
is an example of (1).

In the R-matrix context, matrix B is manifestly antisymmetric because of the
antisymmetry of the Poisson bracket and so (C1) is clearly satisfied. We have thus reduced
the existence of aml-matrix to the single consistency equation (C2) and the construction
of a generalized inverse @i (L).

The construction of a generalized inverse for (a generd)l) was given in [7]. Let
X, denote a Cartan—-Weyl basis for the Lie algepraThat is, {X,} = {H;, E,}, where
{H;} is a basis for the Cartan sub-algelyrand {E,} is the set of step operators (labelled
by the root systemd of g). The structure constants are found from

[Iii’ Ea] = E, [EOH E—ot] =a'-H
and
[Ea, Eﬁ] = Na‘ﬂEaJ’,ﬁ if o +,3 e .

Here Ny g = cZ;ﬁ. With these definitions we then have that

J B
\ =
i— 0 —BLF 0 u'
ad(L) = ( . " ) = ( ) (6)
a— \ —qo;L Aj v A

where we index the rows and columns first by the Cartan sub-algebra pagis:
1...rankg} then the root systenfe, 8 € ®}. We will use this block decomposition of
matrices throughout. Here andv are |®| x rank g matrices and we have introduced the
|®| x |®| matrix

A =a- L8 +cg gL )

wherea - L = Y"*%% o, 1. With these definitions from [7] we have that for genetithe
matrix A is invertible and a generalized inverseaf(L) is given by

1 0\/0 O 1 —u'A™t\ (0 0 g
(—A—lv 1) (0 A—l)(o 1 )_<o A—1>' ®)

We may now assemble these results to yield Ramatrix. It is convenient to express
the Poisson brackets of the entrieslofn the same block form in the Cartan—Weyl basis

(0 )

where B% = {L% L/} = j1,; and so on. From the fact that = —ad(L)", a generalized
inverse ofA is given by minus the transpose of the generalized inverse (8) and consequently
we obtain the projectors

b_( 0 0 . 0 vTAIT
R | 2=\o 1 )
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The constraint (C2) is now (the rangkx the rankg matrix equation)
(C2) 0=1—-PH)BA-P)=C+u A Tu —u" A u4u"ApA U, (10)

Supposing the constraint (C2) is satisfied we then find from (4) that the getenatrix
takes the form

#=(anirs o e )
AT+ ATA T —3ATY ~AYvp—Fu —Atvg—FAT)’
(11)
The second term characterizes the ambiguityRirwhere we have parametrized the
matricesY, Z in (4) by

Y:(p q) and Z:<a b).
ros c d
Here the matricep, g are arbitrary while the entries &f are such that

F=AYav' AT +d+ A vb+co'A™1T (12)

is symmetric.

3. The Calogero—Moser models

We now recall the salient features of the Calogero—Moser models and in particular those
associated witlgl,,. For any root system [13, 14] the Calogero—Moser models are the natural
Hamiltonian systems

1 2
H ZZp, +;)U(a x) (13)
where (up to a constant) the potentla(z) is the Weierstrasg-function or a degeneration

that will be specified below. For the root systems of the classical algebras a Lax pair may
be associated with the models; in the exceptional setting the existence of a Lax pair is still
an open question. In fact we do not have direct proof of the complete integrability of the
Calogero—Moser models associated with any of the exceptional simple Lie algebras. Let us
consider Lax pairs of the following form [8]

L=p-H+) f'E, M=b-H+» wE, (14)

acd aed

and where the functiong®, w* (« € ®) are such that

f%=f%a-x) w* = w*(a - x). (15)
Then
L=p-H+) a if"E, (16)
aed
and
[L,M] = Z((a cpw* —a-bf*E, — f%w%%” - H) + Z c/";},fﬂw”Ea. 17)
aed éi,yed)
+y=a

We further assume thatis momentum independent. Upon utilizing= p; and comparing
(16) and (17) we find that the Lax equatién= [L, M] yields the equations of motion for
(13) provided the following consistency conditions (for eack ®) are satisfied:
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@
wa:fa/
(b)
d1l 2
p'z_ thO[\/:_ f th/VZ _f*C{fC{
o; 0; dxzae(ba'a
= — —ZU(a x)
acd
(c)

fAwr fﬁfy'

— o —

«-b= Z Cpy fe - Z /31/ foz )
B.ye®

Bry=a Bry=a

The second equation determines the potential in terms of the unknown fungtioris is
the final constraint that is the most difficult to satisfy.

Let us now focus on the Lie algebgd,. Here® = {e; —¢;, 1 < i # j < n}, where the
e; form an orthonormal basis @&”. If ¢,; denotes the elementary matrix with tbe s)th
entry one and zero elsewhere, then the » matrix representatiol; = ¢;; and E, = e¢;;,
whena = ¢; — ¢; gives the usual representation bf Working with the simple algebra,
corresponds to the centre-of-mass frame. Here the Calogero—Moser models are built from
the functions

o= AM gt ax (18)
o)o(a - x)

These functions satisfy the addition formula

FfP = FPF = (o — 2p) [P (19)
where
fa//
2f«
Hereo (x) and¢(x) = o'(x)/o (x) are the Weierstrass sigma and zeta functions [21]. The
quantityu in (18) is known as the spectral parameter. We find

)\'2
U(Ol'x)=—3(60(06'x)—&)(u)) (21)

W= =)+ P, (20)

and that

Z Chy 28

B.yed
B+y=a

which in components becomes

bi=1) o —x). (22)

J#i

The Weierstrasg-function includes as degenerations the potentials
22 22 22
22" sinz2’  sinhz?’
The first of these is the original (rational) Calogero—Moser model whereas the second is the
Sutherland model [20].

2(n +1

U(z) = (23)
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4. The gl,, Calogero—MoserR-matrix

We shall now apply the construction of section 2 to glie Calogero—Moser models. Upon
examination of (10) and (11) we see that the relevant quantities to calculate are the matrices
B* = {L*, L} and the componentd andu of ad(L). Using{p;, f*} ={pj,a-q} f¥ =

o; f* we find that

(LOLy =) (L' L)X, ® Xy =) ;[ (H; ® Ey — Ea ® H)).
'Ry Jo

This means that we have

B
B=< 0 Bif >=—BT

—a; f 0
and upon comparison with (9) we see tijat ¢ = 0. For the case in hand
gk = — f %oy A =a-pig+ cg_ﬁﬂf‘)‘*’3 (24)
and it will be convenient to introduce thed| x rank g) matrix
Wat = — f¥ay. (25)

o T
ThusB = <g g) ) Being quite explicit, ife =e; —e¢; and B = e, — ¢, then

A AD = (pi = p8is] + f i —x)8] — flxg — x5
u. UGij) e = — (i — (Sjk)f(x]' —X;) (26)
w: wijx = — Gk — 8x) f1(xi — x;)

where we adopt the obvious notational shorthand of replacing the matrix indices for
o =¢; —e¢; by (ij) and so on.

With these quantities at hand the necessary and sufficient condition (C2) given by (10)
takes the form

(C2) O=u'Atw—w'A My (27)
which in components becomes

(C2 0="> (i f (A O3 f7 B — i f(ADLFPB)). (28)
o,

When this is satisfied we have from (11) that the gen&rahatrix is given by

. ( 0 o> N ( p q > (29)
S \@ahystp o —AYwp—Fu —Atg—FAT)’

The second term, which characterizes the possible ambiguity iR-tmatrix, was described

in section 2.

It is instructive to consider how the minimal solution given by the first term of (29)
satisfies (5). We have

RY = (A™H% 7B RV =0 R*=0 R =0. (30)
This is to be compared with the previously knowinamatrix [2]
. y ; lot; | A
RY =0 RV =0 R = ——f“ R =§yip0—
>/ .07
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which exists only for the potential§ (z) = 12/z2, A?/sinz?, A?/sinhz? [5]. Examination
of the generaR-matrix equation (5) yields three different equations depending on the range
of indices{u, v}. For (u,v) = (i, j), (i, «) and(«, B), respectively, these are

0= Z(R"‘jai — R¥aj) f™
af = pRC =Y iR+ Y (B fPRP+ PRI ) (31)
J B

and
0= (R?f*—BiR*fP)— (- pR** — - pR*)

F YR, 7 = Ry )
14

Employing (30) we see that the final two equations are automatically satisfied. The
first equation (31) is less obvious until we realize that it just expresses the remaining
constraint (C2) necessary for a solution to exist. This identification follows on from using
R = (ALY fPB;.

At this stage we have reduced the existence oRanatrix for Calogero—Moser systems
to that of a constraint equation.

Result 1. The elliptic Calogero—Moser system h&smatrix (30) if and only if (28)—or
equivalently (27)—is satisfied.

We remark that (27) is again of the form (1) for the (non-square) matrix A ~1Tx and
B = 0, where we now wish to show that = w is a solution. The general theory applies
and asB = 0 the constraints are automatically satisfied. One discovers in this situation that
the requirement fo?, Z P, to be symmetric is equivalent to the symmetry of the matrix
wl ATy,

5. The constraint

It remains for us to analyse the constraint equation (28). Although the inverse matrices here
look somewhat daunting we may use the co-factor expansion of an inverse to give

0
[

Thus (28) is equivalent to showing that (for edchi) the (|®|+1) x (|®|+ 1) determinants
satisfy

= —|AlkTATY.

0 Ol,'f_a 0 Oljf_a

, =1, (32)
Bi f* A Bif? A
wherg A = (Age). To be quite explicit we wish to show that (for eagly)
‘ O wuesni| | O uey, (33)
kl kl
Wiki), j Aimi wan,i Al

where A (to be invertible),u and w are given by (26), the indicesk/), (rs) run
over ordered distinct pairs and the functions being considered are givefi(by =

1 Note the adjugate matrix of involves the transpose of the co-factors and hence the perhaps puzzling interchange
of rows and columns here.
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(o —x))/(o@)o(x)) €W, Actually, because of the symmetry of the problem, it suffices
to show that (32) holds for any two indicés# j (it clearly holds fori = j) and we may
take these, for example, to be=1, j = 2.

We are unable to prove (32) in generality. Symbolic manipulation has verified it true
for small numbers of particles and it has satisfied extensive numerical checks. At present
we can only present it as conjecture. The conjectured identity appears new.

We remark that in the present setting one can show that for arbitrary functioier
which A is invertible)

e

0 o;
= 34
’ Biff A (34

0= (uTA_lU),‘j = ZO[;/L_(X(A_]-)%L/S,B]‘
o,p

Whereas (34) is true for any functiorf§, equation (32) will only hold for a more restricted
class of functions. The constraint requires that functions of the form (18) satisfy (32).

6. Discussion

This paper has been devoted to the construction of a spectral parameter inde@Re ik

for the elliptic Calogero—-Moser models. Previous work has shown that no momentum
independent and spectral parameter indepen&emiatrix exists for the models for more
than three particles. By viewing thR-matrix equation as a particular case of the general
matrix equation (1) we are able to give necessary and sufficient conditions for a (generally
momentum dependent}-matrix to exist. No recourse to special ansatz is needed and
the general form of th&-matrix can be specified. The elliptic Calogero—-Moser model has
R-matrix (30) if and only if (28)—or equivalently (27)—is satisfied. The desiRethatrices
existence has thus been reduced to the validity of a single constraint. This constraint may
equally be cast as the equality between two determinants (32) involving elliptic functions.
(We have unpacked most of the Lie algebra notation in the explicit form (33).) Such an
identity appears new. Unfortunately we have been unable to prove (32) in generality and
we present it here as conjecture.
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