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Abstract. A new spectral parameter independentR-matrix (that depends on all of the
dynamical variables) is proposed for the elliptic Calogero–Moser models. The necessary and
sufficient conditions for the existence thisR-matrix reduces to a determinantal equality involving
elliptic functions. The required identity appears new and is still unproven in full generality; we
present it as conjecture.

1. Introduction

This paper concerns the construction of anR-matrix for the elliptic Calogero–Moser models.
Together with a Lax pair, theR-matrix is a key ingredient of the modern approach to
completely integrable systems. In this approach the Lax equationL̇ = [L,M] enables
us to construct conserved quantities such as the traces TrLk, while theR-matrix shows
that these quantities Poisson commute. A system is said to be completely integrable when
we have enough independent, mutually Poisson commuting conserved quantities. For such
systemsR-matrices must exist [3]. For completely integrable systems Liouville’s theorem
[1, 12] tells us that we may integrate the equations of motion by quadratures; with certain
completeness assumptions‡ on the flows, Arnold’s extension of Liouville’s theorem ensures
the existence of global action-angle variables. TheR-matrix is also an essential ingredient
when examining the separation of variables of such integrable systems [11, 19].

Recent work has yielded necessary and sufficient conditions for anR-matrix to exist,
together with an explicit construction, and we shall now apply this to the elliptic Calogero–
Moser models. For the rational and trigonometric degenerations of these models Avan and
Talon [2] have constructedR-matrices under an assumption of momentum independence;
R-matrices can in principle be functions of the dynamical variables. For the elliptic models,
however, [5] shows that no momentum independentR-matrices can be constructed for
more than three particles. This restriction can be circumvented by consideringR-matrices
depending on a spectral parameter, and such momentum independentR-matrices were
found for the elliptic Calogero–Moser models by Sklyanin [18] and Braden and Suzuki
[5]. A question, however, remains unanswered: are there spectral parameter independent
R-matrices for the elliptic Calogero–Moser models? Here we propose suchR-matrices.
The necessary and sufficient conditions for theR-matrix to exist reduce to a single identity
involving matrices with elliptic function entries. This identity appears to be new and we
have been unable to prove it in generality: it is given here as conjecture.

† E-mail address: hwb@ed.ac.uk
‡ Flaschka [10] gives several simple examples where these assumptions fail.
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An outline of the paper is as follows. In sections 2 and 3 we briefly review the
construction ofR-matrices and the Calogero–Moser models, respectively. In section 4 we
combine this material to obtain necessary and sufficient conditions for a spectral parameter
independentR-matrix for the elliptic Calogero–Moser models to exist, specifying the
R-matrix when such holds true. The necessary and sufficient conditions may be expressed
as an equality between two determinants involving elliptic functions: this is presented in
section 5. The final section is devoted to a brief discussion.

2. The construction

Recent advances in the construction and understanding ofR-matrices follow from the study
of a more general matrix equation [6]

ATX −XTA = B. (1)

As we shall review, theR-matrix equation is a particular example of this. BecauseA is in
general singular the general solution to (1) is in terms of a generalized inverseG satisfying

AGA = A and GAG = G. (2)

Such a generalized inverse† always exists. Given aG satisfying (2) we have at hand
projection operatorsP1 = GA andP2 = AG which satisfy

AP1 = P2A = A P1G = GP2 = G. (3)

The matrix equation (1) then has solutions if and only if

(C1) BT = −B
(C2) (1− P T

1 )B(1− P1) = 0

in which case the general solution is

X = 1
2G

TBP1+GTB(1− P1)+ (1− P T
2 )Y + (P T

2 ZP2)A (4)

whereY is arbitrary andZ is only constrained by the requirement thatP T
2 ZP2 is symmetric.

Although the general solution appears to depend on the generalized inverseG, any other
choice of generalized inverse will only change the solution within the ambiguities given
by (4).

The classicalR-matrix construction [17] arises as a particular case of (4) as follows.
Suppose the Lax matrixL is in a representationE of a Lie algebrag (here taken to be
semi-simple). The classicalR-matrix is anE ⊗ E valued matrix such that

[R,L⊗ 1]− [RT, 1⊗ L] = {L⊗, L}. (5)

Let Tµ denote a basis for the (finite-dimensional) Lie algebrag with [Tµ, Tν ] = cλµνTλ
defining the structure constants ofg. Setφ(Tµ) = Xµ, whereφ yields the representationE
of the Lie algebrag; we may take this to be a faithful representation. WithL =∑µ L

µXµ,
the left-hand side of (5) becomes

{L⊗, L} =
∑
µ,ν

{Lµ,Lν}Xµ ⊗Xν

† Accounts of generalized inverses may be found in [4, 9, 15, 16]. Indeed the Moore–Penrose inverse—which is
unique and always exists—further satisfies(AG)† = AG, (GA)† = GA.
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whereas settingR = RµνXµ ⊗Xν andRT = RνµXµ ⊗Xν the right-hand side yields

[R,L⊗ 1]− [RT, 1⊗ L] = Rµν([Xµ,L] ⊗Xν −Xν ⊗ [Xµ,L])

= RµνLλ([Xµ,Xλ] ⊗Xν −Xν ⊗ [Xµ,Xλ])

= (RτνcµτλLλ − RτµcντλLλ)Xµ ⊗Xν.
By identifyingAµν = cνµλLλ ≡ −ad(L)νµ, Bµν = {Lµ,Lν} andXµν = Rµν we see that (5)
is an example of (1).

In the R-matrix context, matrixB is manifestly antisymmetric because of the
antisymmetry of the Poisson bracket and so (C1) is clearly satisfied. We have thus reduced
the existence of anR-matrix to the single consistency equation (C2) and the construction
of a generalized inverse toad(L).

The construction of a generalized inverse for (a generic)ad(L) was given in [7]. Let
Xµ denote a Cartan–Weyl basis for the Lie algebrag. That is, {Xµ} = {Hi,Eα}, where
{Hi} is a basis for the Cartan sub-algebrah and {Eα} is the set of step operators (labelled
by the root system8 of g). The structure constants are found from

[Hi,Eα] = αiEα [Eα,E−α] = α∨ ·H
and

[Eα,Eβ ] = Nα,βEα+β if α + β ∈ 8.
HereNα,β = cα+βαβ . With these definitions we then have that

j β

↓ ↓

ad(L) = i →
α→

(
0 −β∨i L−β

−αjLα 3α
β

)
=
(

0 uT

v 3

)
(6)

where we index the rows and columns first by the Cartan sub-algebra basis{i, j :
1 . . . rank g} then the root system{α, β ∈ 8}. We will use this block decomposition of
matrices throughout. Hereu andv are |8| × rank g matrices and we have introduced the
|8| × |8| matrix

3α
β = α · Lδαβ + cαα−ββLα−β (7)

whereα ·L =∑rank g

i=1 αiL
i . With these definitions from [7] we have that for genericL the

matrix3 is invertible and a generalized inverse ofad(L) is given by(
1 0

−3−1v 1

)(
0 0

0 3−1

)(
1 −uT3−1

0 1

)
=
(

0 0

0 3−1

)
. (8)

We may now assemble these results to yield theR-matrix. It is convenient to express
the Poisson brackets of the entries ofL in the same block form in the Cartan–Weyl basis

B =
(
ζ −µT

µ φ

)
= −BT (9)

whereBαj = {Lα,Lj } = µαj and so on. From the fact thatA = −ad(L)T, a generalized
inverse ofA is given by minus the transpose of the generalized inverse (8) and consequently
we obtain the projectors

P1 =
(

0 0

3−1T u 1

)
P2 =

(
0 vT3−1T

0 1

)
.
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The constraint (C2) is now (the rankg× the rankg matrix equation)

(C2) 0=(1− P T
1 )B(1− P1)≡ζ + µT3−1Tu− uT3−1µ+uT3−1φ3−1Tu. (10)

Supposing the constraint (C2) is satisfied we then find from (4) that the generalR-matrix
takes the form

R =
(

0 0

−3−1µ+ 1
23
−1φ3−1Tu − 1

23
−1φ

)
+
(

p q

−3−1vp − Fu −3−1vq − F3T

)
.

(11)

The second term characterizes the ambiguity inR where we have parametrized the
matricesY,Z in (4) by

Y =
(
p q

r s

)
and Z =

(
a b

c d

)
.

Here the matricesp, q are arbitrary while the entries ofZ are such that

F = 3−1vavT3−1T+ d +3−1vb + cvT3−1T (12)

is symmetric.

3. The Calogero–Moser models

We now recall the salient features of the Calogero–Moser models and in particular those
associated withgln. For any root system [13, 14] the Calogero–Moser models are the natural
Hamiltonian systems

H = 1

2

∑
i

p2
i +

∑
α∈8

U(α · x) (13)

where (up to a constant) the potentialU(z) is the Weierstrass℘-function or a degeneration
that will be specified below. For the root systems of the classical algebras a Lax pair may
be associated with the models; in the exceptional setting the existence of a Lax pair is still
an open question. In fact we do not have direct proof of the complete integrability of the
Calogero–Moser models associated with any of the exceptional simple Lie algebras. Let us
consider Lax pairs of the following form [8]

L = p ·H +
∑
α∈8

f αEα M = b ·H +
∑
α∈8

wαEα (14)

and where the functionsf α, wα (α ∈ 8) are such that

f α = f α(α · x) wα = wα(α · x). (15)

Then

L̇ = ṗ ·H +
∑
α∈8

α · ẋf α′Eα (16)

and

[L,M] =
∑
α∈8

((α · pwα − α · bf α)Eα − f −αwαα∨ ·H)+
∑
β,γ∈8
β+γ=α

cαβγ f
βwγEα. (17)

We further assume thatb is momentum independent. Upon utilizingẋi = pi and comparing
(16) and (17) we find that the Lax equationL̇ = [L,M] yields the equations of motion for
(13) provided the following consistency conditions (for eachα ∈ 8) are satisfied:



A conjectured R-matrix 1737

(a)

wα = f α′
(b)

ṗ = −
∑
α∈8

f −αwαα∨ = −
∑
α∈8

f −αf α′α∨ = − d

dx

1

2

∑
α∈8

2

α · αf
−αf α

= − d

dx

∑
α∈8

U(α · x)

(c)

α · b =
∑
β,γ∈8
β+γ=α

cαβγ
f βwγ

f α
=

∑
β,γ∈8
β+γ=α

cαβγ
f βf γ ′

f α
.

The second equation determines the potential in terms of the unknown functionsf α. It is
the final constraint that is the most difficult to satisfy.

Let us now focus on the Lie algebragln. Here8 = {ei − ej , 16 i 6= j 6 n}, where the
ei form an orthonormal basis ofRn. If ers denotes the elementary matrix with the(r, s)th
entry one and zero elsewhere, then then× n matrix representationHi = eii andEα = eij ,
whenα = ei − ej gives the usual representation ofL. Working with the simple algebraan
corresponds to the centre-of-mass frame. Here the Calogero–Moser models are built from
the functions

f α = λ σ(u− α · x)
σ (u)σ (α · x) eζ(u)α·x. (18)

These functions satisfy the addition formula

f αf β′ − f βf α′ = (zα − zβ)f α+β (19)

where

zα = f α′′

2f α
= λ℘(α · x)+ λ

2
℘(u). (20)

Hereσ(x) andζ(x) = σ ′(x)/σ (x) are the Weierstrass sigma and zeta functions [21]. The
quantityu in (18) is known as the spectral parameter. We find

U(α · x) = −λ
2

2
(℘ (α · x)− ℘(u)) (21)

and that

b = 1

2(n+ 1)

∑
β,γ∈8
β+γ=α

cαβγ zβα

which in components becomes

bi = λ
∑
j 6=i

℘ (xi − xj ). (22)

The Weierstrass℘-function includes as degenerations the potentials

U(z) = λ2

z2
,

λ2

sinz2
,

λ2

sinhz2
. (23)

The first of these is the original (rational) Calogero–Moser model whereas the second is the
Sutherland model [20].
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4. The gln Calogero–MoserR-matrix

We shall now apply the construction of section 2 to thegln Calogero–Moser models. Upon
examination of (10) and (11) we see that the relevant quantities to calculate are the matrices
Bµν = {Lµ,Lν} and the components3 andu of ad(L). Using{pj , f α} = {pj , α · q}f α′ =
αjf

α′ we find that

{L⊗, L} =
∑
µ,ν

{Lµ,Lν}Xµ ⊗Xν =
∑
j,α

αjf
α′(Hj ⊗ Eα − Eα ⊗Hj).

This means that we have

B =
(

0 βif
β′

−αjf α′ 0

)
= −BT

and upon comparison with (9) we see thatζ = φ = 0. For the case in hand

uαk = −f −ααk 3α
β = α · pδαβ + cαα−ββf α−β (24)

and it will be convenient to introduce the (|8| × rank g) matrix

wαk = −f α′αk. (25)

ThusB =
(

0 −wT

w 0

)
. Being quite explicit, ifα = ei − ej andβ = er − es then

3: 3
(ij)

(rs) = (pi − pj )δirδjs + f (xi − xr)δjs − f (xs − xj )δir
u: u(ij),k = −(δik − δjk)f (xj − xi) (26)

w: w(ij),k = −(δik − δjk)f ′(xi − xj )
where we adopt the obvious notational shorthand of replacing the matrix indices for
α = ei − ej by (ij) and so on.

With these quantities at hand the necessary and sufficient condition (C2) given by (10)
takes the form

(C2) 0= uT3−1w − wT3−1T u (27)

which in components becomes

(C2) 0=
∑
α,β

(αif
−α(3−1)αβf

β′βj − αif α′(3−1)βαf
−ββj ). (28)

When this is satisfied we have from (11) that the generalR-matrix is given by

R =
(

0 0

(3−1)αβf
β′βj 0

)
+
(

p q

−3−1vp − Fu −3−1vq − F3T

)
. (29)

The second term, which characterizes the possible ambiguity in theR-matrix, was described
in section 2.

It is instructive to consider how the minimal solution given by the first term of (29)
satisfies (5). We have

Rαj = (3−1)αβf
β′βj Rij = 0 Riα = 0 Rαβ = 0. (30)

This is to be compared with the previously knownR-matrix [2]

Rαj = 0 Rij = 0 Riα = −|αi |
2
f α Rαβ = δα+β,0f

α′

f α
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which exists only for the potentialsU(z) = λ2/z2, λ2/sinz2, λ2/sinhz2 [5]. Examination
of the generalR-matrix equation (5) yields three different equations depending on the range
of indices{µ, ν}. For (µ, ν) = (i, j), (i, α) and(α, β), respectively, these are

0=
∑
α

(Rαjαi − Rαiαj )f −α

αif
α′ = α · pRαi −

∑
j

αjR
jif α +

∑
β

(βif
βR−βα + f α−βRβicαα−ββ) (31)

and

0=
∑
i

(αiR
iβf α − βiRiαf β)− (α · pRαβ − β · pRβα)

+
∑
γ

(Rγβcαγα−γ f
α−γ − Rγαcβγβ−γ f β−γ ).

Employing (30) we see that the final two equations are automatically satisfied. The
first equation (31) is less obvious until we realize that it just expresses the remaining
constraint (C2) necessary for a solution to exist. This identification follows on from using
Rαj = (3−1)αβf

β′βj .
At this stage we have reduced the existence of anR-matrix for Calogero–Moser systems

to that of a constraint equation.

Result 1. The elliptic Calogero–Moser system hasR-matrix (30) if and only if (28)—or
equivalently (27)—is satisfied.

We remark that (27) is again of the form (1) for the (non-square) matrixÃ = 3−1Tu and
B̃ = 0, where we now wish to show that̃X = w is a solution. The general theory applies
and asB̃ = 0 the constraints are automatically satisfied. One discovers in this situation that
the requirement forP T

2 ZP2 to be symmetric is equivalent to the symmetry of the matrix
wT3−1Tu.

5. The constraint

It remains for us to analyse the constraint equation (28). Although the inverse matrices here
look somewhat daunting we may use the co-factor expansion of an inverse to give∣∣∣∣ 0 k

l 3

∣∣∣∣ = −|3|kT3−1l.

Thus (28) is equivalent to showing that (for eachi, j ) the (|8|+1)× (|8|+1) determinants
satisfy ∣∣∣∣ 0 αif

−α

βjf
β′ 3

∣∣∣∣ = ∣∣∣∣ 0 αjf
−α

βif
β′ 3

∣∣∣∣ (32)

where† 3 = (3βα). To be quite explicit we wish to show that (for eachi, j )∣∣∣∣ 0 u(rs),i

w(kl),j 3
(kl)

(rs)

∣∣∣∣ = ∣∣∣∣ 0 u(rs),j

w(kl),i 3
(kl)

(rs)

∣∣∣∣ (33)

where 3 (to be invertible), u and w are given by (26), the indices(kl), (rs) run
over ordered distinct pairs and the functions being considered are given byf (x) =
† Note the adjugate matrix of3 involves the transpose of the co-factors and hence the perhaps puzzling interchange
of rows and columns here.
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(σ (u−x))/(σ (u)σ (x)) eζ(u)x . Actually, because of the symmetry of the problem, it suffices
to show that (32) holds for any two indicesi 6= j (it clearly holds fori = j ) and we may
take these, for example, to bei = 1, j = 2.

We are unable to prove (32) in generality. Symbolic manipulation has verified it true
for small numbers of particles and it has satisfied extensive numerical checks. At present
we can only present it as conjecture. The conjectured identity appears new.

We remark that in the present setting one can show that for arbitrary functionsf α (for
which3 is invertible)

0= (uT3−1v)ij =
∑
α,β

α∨i L
−α(3−1)αβL

ββj =
∣∣∣∣ 0 αif

−α

βjf
β 3

∣∣∣∣ . (34)

Whereas (34) is true for any functionsf α, equation (32) will only hold for a more restricted
class of functions. The constraint requires that functions of the form (18) satisfy (32).

6. Discussion

This paper has been devoted to the construction of a spectral parameter independentR-matrix
for the elliptic Calogero–Moser models. Previous work has shown that no momentum
independent and spectral parameter independentR-matrix exists for the models for more
than three particles. By viewing theR-matrix equation as a particular case of the general
matrix equation (1) we are able to give necessary and sufficient conditions for a (generally
momentum dependent)R-matrix to exist. No recourse to special ansatz is needed and
the general form of theR-matrix can be specified. The elliptic Calogero–Moser model has
R-matrix (30) if and only if (28)—or equivalently (27)—is satisfied. The desiredR-matrices
existence has thus been reduced to the validity of a single constraint. This constraint may
equally be cast as the equality between two determinants (32) involving elliptic functions.
(We have unpacked most of the Lie algebra notation in the explicit form (33).) Such an
identity appears new. Unfortunately we have been unable to prove (32) in generality and
we present it here as conjecture.
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